\(\int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx\) [123]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 85 \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d
*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3861, 3859, 209, 3880} \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[1/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d*x
])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3861

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[1/a, Int[Sqrt[a + b*Csc[c + d*x]], x], x]
- Dist[b/a, Int[Csc[c + d*x]/Sqrt[a + b*Csc[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt {a+a \sec (c+d x)} \, dx}{a}-\int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = -\frac {2 \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.80 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.53 \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {2 \left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )-\sqrt {2} \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}\right )\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)}}{d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[1/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(-2*(ArcSin[Tan[(c + d*x)/2]] - Sqrt[2]*ArcTan[Tan[(c + d*x)/2]/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]])*Sqrt[C
os[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]])/(d*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[a*
(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 0.86 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.60

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (2 \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \sqrt {2}\right )}{d a}\) \(136\)

[In]

int(1/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(a*(1+sec(d*x+c)))^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(2*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d
*x+c)/(cos(d*x+c)+1))^(1/2))-ln(csc(d*x+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1
/2))*2^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 294, normalized size of antiderivative = 3.46 \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\sqrt {2} a \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 2 \, \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{2 \, a d}, \frac {\sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{a d}\right ] \]

[In]

integrate(1/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*a*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(
d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 2*sqrt(-a)*log((2*a
*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c
) - a)/(cos(d*x + c) + 1)))/(a*d), (sqrt(2)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos
(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqr
t(a)*sin(d*x + c))))/(a*d)]

Sympy [F]

\[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a \sec {\left (c + d x \right )} + a}}\, dx \]

[In]

integrate(1/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(1/sqrt(a*sec(c + d*x) + a), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.68 (sec) , antiderivative size = 698, normalized size of antiderivative = 8.21 \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} \sqrt {a} \arctan \left (\frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}, \frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \cos \left (d x + c\right ) - 2}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}\right ) - \sqrt {a} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \cos \left (d x + c\right )\right )}{a d} \]

[In]

integrate(1/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-(sqrt(2)*sqrt(a)*arctan2(((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x
+ c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x +
 c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*sin(1/2*arctan2(8
*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^
2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*sin(d*x + c))/abs(2*e^(I*d*x + I
*c) + 2), ((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x
 + c)^2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*
x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) -
 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x +
c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) -
sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)))/(a*d)

Giac [F]

\[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(1/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(1/(a + a/cos(c + d*x))^(1/2), x)